
An Open-Source Python Framework for the Generation

of Questionnaire GUIs without Programming

Daphne Schössow1, Jakob Bergner1, Stephan Preihs1, Jürgen Peissig1
1 Leibniz University Hannover (LUH), Institute of Communications Technology (IKT), Appelstr. 9A, 30167 Hannover,

Email: name.surname@ikt.uni-hannover.de

Abstract
Questionnaires in paper form are nowadays more and
more replaced by digital graphical user interfaces (GUI),
which however often can hardly be adapted to one’s own
wishes. To simplify the use of digital questionnaires,
a Python-based open-source framework was developed,
that allows to create diverse questionnaires without any
programming knowledge. The software has a graphical
user interface as well as the possibility to edit the en-
tire questionnaire structure in one configuration text file.
Many common question and answer types are already
implemented, but the selection is still being extended.
Furthermore, interfaces for communication with other
software instances and systems are possible, for example
OSC. The software is designed so that different compo-
nents can also run on different computers.

The presented framework is explained with the example
of a listening test environment that utilises subsystems
for audio, pupillometry, and collection of physiological
data, that are controlled and synchronised on three dif-
ferent computers.

Introduction
For the presentation of multimedia content in laboratory
studies, it is handy to have a digital questionnaire rou-
tine instead of using paper questionnaires. However, not
everyone who wishes to conduct a study has the program-
ming knowledge to build a digital graphical user interface
from scratch. Another issue that might occur with using
different tools is that the built routine is dependent on a
specific software version such that the PC gets cluttered
with multiple versions and it is easy to lose track of which
are actually needed.

The main goal of this project was to create an easy to use
software for creating questionnaires without program-
ming knowledge which makes it uncomplicated to reuse
them. Further goals were the ability to comfortably run
the questionnaires with touch gestures and the possibil-
ity to include different subsystems like audio and video
playback or pupillometry and other biofeedback.

In the following, first the software and its possibilities
and components are presented and then an exemplary
setup for a listening test is given.

QUestionnaire Editor SysTem
The QUestionnaire Editor SysTem (QUEST) [1] is a soft-
ware tool that is split into two main components: the
creation of a questionnaire and the actual execution of
an experiment. This way the tool integrates well into
the workflow of creating a laboratory study as can be

seen in figure 1.
QUEST is entirely programmed in Python and uses PyQt
[2], a Python wrapper for Qt, for the graphical compo-
nents. The QUEST source code is documented within a
Wiki. Besides the description of all question types and
attributes, it contains guidelines for the configuration of
external software control as well as optional code exten-
sions.

Figure 1: A typical workflow for QUEST. All steps are avail-
able from the launcher.

Editor
The main component of the software is the graphical
questionnaire editor. The workspace of the editor is split
into three parts: a structural view of the pages and ques-
tions, details for the selected element, and a preview of
the page to be edited.

Figure 2: The questionnaire editor showing the details of
the question “Radio”. On the left is a structural view of the
entire questionnaire. In the middle, the details of the question
can be edited. On the right is a preview of the current page.

The structural view shows the (default) order of pages
and the questions belonging to each page. Both, ques-
tions and pages, can be reordered by drag&drop. When
an element is selected in the structural view, its at-
tributes can be viewed and edited in the details editor.
General settings can be edited by clicking the question-
naire name on top of the structure. As long as the ques-
tionnaire is executable, a preview of any page can be
viewed in the preview section. Whenever a preview is

DAGA 2022 Stuttgart

960



requested by the user the entire structure of the ques-
tionnaire gets validated. If serious issues arise, a popup
window with detailed descriptions of the location and
cause of the error appears. A general validation, which
also includes warnings with details, can be started from
the dropdown menu. Another feature from the menu al-
lows exporting the entire GUI preview as .pdf-document.

Structure
A questionnaire file has three structural components.
These are global values like the stylesheet or connection
information, pages, and questions. Each page needs to
have a unique name. The same holds for questions within
a page. Concurrent pages can be included in a group to
randomise their order, either by predefined orders from
a file or by the means of balanced latin squares.

Question Types
The software features a multitude of question types rang-
ing from basic to listening test specific. The basic ques-
tion types include questions or statements where the par-
ticipant has to choose one answer (Radio), or zero to mul-
tiple answers (Checkbox). If there is a selection of ques-
tions or statements that all have the same answer possi-
bilities (of which one should be chosen), it is also possible
to use the question type Matrix where the order of items
gets randomised (once per questionnaire). Other basic
question types include text entry (Text). The type of in-
put can be restricted to numerical or a pattern given by a
regular expression. The special question type Password

allows only predefined input values given in a separate
file. For range-based answers, the question type Slider

provides an easy input method. It can have labels at
both ends and optionally labelled ticks.

There are also some structural question types. These
include a horizontal divider (HLine), Plain Text, and
Image.

For listening test questionnaires, there is a basic Player
module, which sends Open Sound Control (OSC) mes-
sages by clicking its Play-button to start a video or audio
playback from a (different) PC. QUEST itself just pro-
vides the GUI for the questionnaire and thus does not
come with any audio or video playback engine but can
work with any player that can be controlled with code.
Either by using built-in OSC communication or by util-
ising a script that receives the messages and translates
them to other controls. An additional question type is
a MUSHRA player, which consists of several playable stim-
uli, each with a rating slider, and a control unit. An-
other listening test specific question type unit is an ABX

test. Such a test can be built with basic question types
as well, this type aligns the elements automatically and
adds randomisation of the order of the stimuli such that
it is double-blind during the experiment. Similar to the
Player there is an additional OSCButton, which can send
any predefined OSC message to any device.

Since not every program works with OSC, another ques-
tion type (Button) was created to send network control
messages using the ZeroMQ (ZMQ) protocol, which is for
example supported by the software Pupil Capture [5].

Figure 3: A questionnaire showing all currently possible
question types.

Most question types can be set to require an answer. If
none is given, the next page will not load and the missing
questions are marked red.

An additional functionality of QUEST is to place a but-
ton on the bottom of each page with which the partic-
ipant can send a help request at any time. A script to
listen for this signal is provided with the software and
needs to run on a different PC than the questionnaire.

Running a questionnaire
When the questionnaire is fully configured, it can be run
from the launcher. By selecting the configuration file the
experiment can start. This way there are no accidental
changes in the structure. The structure itself and connec-
tions to other systems controlled by the GUI are checked
before the questionnaire starts. The GUI runs in full-
screen mode such that other interaction with the PC or
tablet is restricted for the participant.

Results are automatically saved into one continuous .csv-
file for all participants. If the questionnaire is interrupted
before the end of the experiment or there is an issue with
the original results file, the results of the run are not lost.
Partial results get automatically backed up after each
page. Furthermore, the interaction of the participant
with the GUI gets logged with timestamps in its own file
for each participant. Results of connected systems can
be synchronized over timestamps.

DAGA 2022 Stuttgart

961



Interface
As mentioned before, most of the network communica-
tion of this software works with OSC over User Datagram
Protocol (UDP). Some digital audio workstations (DAW)
like REAPER [3] or Max/MSP [4] allow to be controlled
with this protocol. The help-request listener and video-
controller are own Python scripts each, which will also
listen for OSC messages. To collect pupillometry data
during listening tests, in our case Pupil Labs Pupil Core
glasses with their software Pupil Capture were used [5].
This software allows being controlled remotely over the
network, which makes it possible to send controls from
the GUI. However, this software works with ZMQ instead
of OSC, which is deemed more reliable by the developers
[5]. Thus the GUI has to listen for replies from Pupil
Capture.

Example Setup
In the following the setup for the listening tests of the
project “Wagner 3.0” is described.

Figure 4: The setup for the listening tests for “Wagner 3.0”
using QUEST. Green are software, blue hardware compo-
nents. White are data files created in a experimental run.

The listening tests are conducted in a laboratory with
the participant being seated in the centre of the room
surrounded by loudspeakers. For the experiment pupil-
lometry data is collected with the Pupil Core glasses.
Additionally, biofeedback data is also collected from the
participant using the NeXus 10 [6]. This includes breath-
ing rate, skin conductance, blood volume pulse, and elec-
tromyography. However, the software BioTrace is closed
source and does not allow to be controlled remotely. To
have synchronisation points in the recordings, the NeXus
Trigger Interface is utilised. Whenever a stimulus starts
playing in REAPER, a unique binary coded signal is sent
to the line-in input of the interface. This results in so-
called line triggers in the recordings. This is necessary
not only to ensure the synchronicity of the subsystems
but also because the recordings do not include global
clock timestamps. Pupil Capture and BioTrace are run-
ning on a PC behind the participant while another PC,

on which the DAW is running, is situated in the control
room. A REAPER session with markers for the differ-
ent stimuli was created. Additionally, the help server of
QUEST is running on this PC as well such that the par-
ticipant can easily call for help if needed and the instruc-
tor can check the progress of the experiment. To syn-
chronise the three measurements the questionnaire GUI
of QUEST logs the timestamp when the Play-button of
a Player-object is pressed. At the same time an annota-
tion with the name of the stimulus and the time is sent
to Pupil Capture via ZMQ. When the REAPER session
receives the play signal over OSC a 6 digit binary coded
signal, which is unique for each stimulus, is transmitted
to the NTI over its line-in port to create trigger points.
This experimental setup leads to more than one file as
the data from the external systems (Pupil Capture and
BioTrace) produce their own files. However, the files can
be linked over the participant number and timestamps.
The sent triggers can be used for synchronisation as well.

Conclusion
An open-source software for easily creating and using
digital questionnaires was programmed. The already
present question types allow a wide range of uses and
are highly customisable over the editor’s GUI. It is also
possible to integrate QUEST into one’s development cy-
cle as the questionnaire preview can be saved and be used
individually from the program itself. As the possibilities
of question types for laboratory studies are plenty, the
software is still in active development and new features
get added over time. Further improvements might in-
clude interfaces to different systems, more question types
e.g. sound source localisation, a graphical editor for the
stylesheets, and much more. As the software is freely
available under the GNU GPL 3 license anyone can con-
tribute or extend the software to their need. Currently
the software was only tested under Windows 10, thus
compatibility with other systems is not guaranteed. Fu-
ture releases will tackle this issue.

References
[1] Schössow, D.: QUEST - QUestionnaire Editor

SysTem, URL: https://gitlab.uni-hannover.de/
da.schoessow/quest(09.03.2022), DOI: 10.5281/

zenodo.6340995

[2] Riverbank Computing: PyQt, URL: https:

//www.riverbankcomputing.com/software/

pyqt/(21.02.2022)

[3] Cockos Incorporated: REAPER Digital Audio Work-
station, URL: https://www.reaper.fm/(21.02.2022)

[4] Cycling ’74: Max/MSP, URL: https://cycling74.
com/products/max(17.03.2022)

[5] Pupil Labs: Pupil Core Network API, URL:
https://docs.pupil-labs.com/developer/core/

network-api/(21.02.2022)

[6] Mind Media: NeXus and BioTrace+, URL: https:
//www.mindmedia.com/de/(21.02.2022)

DAGA 2022 Stuttgart

962


